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Two-Temperature Equilibration Rate for a
Two-Component (e.g., Antihydrogen) Plasma in a

Penning Trap

Yongbin Chang and C. A. Ordonezt

Department of Physics, University of North Texas, Denton, Texas 76203

Abstract. An expression for an equilibration time scale is developed that characterizes tile rate
for a group of test particles with a Maxwellian velocity distribution but different temperature
from that of Maxwellian field particles to relax to the same temperature of the field particles.
The expression, which can be used for any value of the Coulomb logarithm, is based on onefold
integral expressions for Fokker-Planck velocity-space friction and diffusion coefficients presented
elsewhere [Y. Chang and C. A. Ordonez, Phys. Rev. E 62, 8564 (2000)]. A comparison with
Spitzer's formula shows a noticeable difference when the Coulomb logarithm has values smaller
than 10.

INTRODUCTION

An equilibration time scale is presented that characterizes the rate for a group of test
particles with a Maxwellian velocity distribution but different temperature from that
of Maxwellian field particles to relax to the satne temperature of the field particles.
Spitzer [1,2] formulated the equilibration time scale for a two-component plasma based
on Chandrasekhar's formulas for the velocity space friction and diffusion coefficients
[3,4]. Due to the approximations employed, Spitzer's formula for the equilibration time
scale is limited to plasmas with large Coulomb logarithm values. The present theory is
based on the binary collision model, but is not restricted in applicability by the value of
the Coulomb logarithm. The reader is referred elsewhere [5,6] for more details regarding
the applicability of the theory to plasmas confined in Penning traps. For example, the
present theory can be used to predict the rate at which an antiproton plasma equilibrates
with a low-temperature positron plasma, while both species are simultaneously confined
by a nested Penning trap [7].

l) Electronic mail: cao'munt.edii

CP606, Non-Neutral Plasma Physics IV, edited by F. Anderegg et al.
© 2002 American Institute of Physics 0-7354-0050-4/02/$19.00

550



THE EQUILIBRATION TIME SCALE

Consider a single test particle moving in a plasma of Maxwellian field particles. The
test particle will exchange its energy with the field particles due to collisions. In a single
encounter of a test particle with a field particle, the exchange of energy, AE, is given by

AE : •m (Av2 + 2vAVll), (1)

where m is the mass of the test particle, v is its speed, Av is the magnitude of its velocity
change due to the collision, and Avll is the magnitude of its velocity change along its
original direction. Averaging Eq. (1) over a Maxwellian velocity distribution for the field
particles, the average time rate of change of the test particle energy is written as

(AE) = m. ((Av2) + 2v(A7)1)) (2)2

In Eq. (2), (Avjl) and (Av 2) are the usual Fokker-Planck velocity-space friction and
diffusion coefficients. Let us suppose that a group of test particles have a Maxwellian
velocity distribution with temperature T, which is different from that of the field particles
of temperature Tf. The equilibration time scale can be obtained simply by averaging
Eq. (2) over a Maxwellian velocity distribution for the test particles. The rate of change
of the test particle temperature is defined through the expression,

3n kIT (AE)fM (vT)dv (3)
2 dt

where n is the density of the test particle species, k is Boltzmann's constant, and fM (v, T)
is the Maxwellian velocity distribution with temperature T,

fm(v,T)n ( 2 M ) 3/2 exp (- "nV2). (4)

Because the test particle velocity distribution is isotropic, the integral over solid angle
can be carried out and Eq. (3) can be written as

dT 8ir fo
dt - 37k (A E)fM (v, T) v2dv. (5)

Substituting Eq. (4) into Eq. (5) and carrying out a variable change, u = V/Vth with the

thermal velocity of a field particle defined as Vth = V/2kTf/mf, a non-dimensional form
of Eq. (5) can be written as

dT -8( 1/2 o(AE)exp (_U 2 ) U2du, (6)
dt 3jik

where C = Tfrn/(Tmf) with mf the mass of a field particle. The next step for the
calculation of the equilibration time scale is to integrate Eq. (6). In order to integrate
Eq. (6), one must substitute into Eq. (2) expressions for friction and diffusion coefficients.
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SPITZER'S APPROACH TO THE EQUILIBRATION TIME SCALE

Spitzer employed Chandrasekhar's expressions for the friction and diffusion coeffi-
cients [21,

4av,1,AG (u)(
( A ,To (7 )

and

(Av 2) - 2 (avt,, )2 Aerf (71) (8)
T071

where a = 21t/rn, the reduced mass is it = mmf/(m + ifn), A is the Coulomb logarithm,

the time scale for single particle interactions is 7m = (nfvthrr') , nf is the density of
the field particles, the interaction radius is defined as r0 = ZZfe 2 / (87rcok (ItT 1/mf)),
Z and Z1 are the charge state of a test particle and field particle, e is the unit charge, co
is the permittivity of free space, erf is the error function, and Chandrasekhar's function
is defined as G (u) = -!-I (erf ()/u). Substituting Eqs. (7) and (8) into Eq. (2), the
integral in Eq. (6) can be carried out as

dT 41n (nvh,)2 A (1/ 2 (1 + ( -- 2-')

dt - 3v/-o-Ak (I + ()3/1 (9)

where the Coulomb logarithm has been approximated as being constant. Equation (9)
can be rearranged into the standard form as

dT = T1 - T (10)
=/ Spitzer wd t T-sv iq °

where TS21itzer is the equilibration time scale obtained by Spitzer given by

-8V /-n A ZZ ~e 2  , / 2

Spitzer's equilibration time scale applies when the Coulomb logarithm is large both
because it was approximated as constant and because an approximation was employed
in the process of obtaining Chandrasekhar's expressions for the friction and diffusion
coefficients.

NEW APPROACH TO THE EQUILIBRATION TIME SCALE

Recently, a variable change technique [5,8-121 has been developed, which has been
used for deriving the Fokker-Planck coefficients. Exact onefold integral expressions for
Fokker-Planck velocity-space friction and diffusion coefficients have been obtained from
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the new technique. These expressions make it possible to recalculate the equilibration
time scale without placing a restriction on the value of the Coulomb logarithm. The
expressions for the friction and diffusion coefficients are [5]

(Ao)2aVth f erf(U) + erf(W) exp(- ) -exp(-W)12)
-T 0 U2  

U6  VU

and

(AV2) _ (avth), f erf(U) + erf(W) (13)

where U = u +u 6 , W = u-uj, and u6 = Av/(avll,) is the non-dimensional variable for
velocity change. If we substitute Eqs. (12) and (13) into Eq. (2), Eq. (6) can be expressed
as the following twofold integral:

dT _ 4m(avth,)2
(

3/ 2  (erf(U) + erf(W) _ exp(-U 2 ) - exp(-W42)\ ududu6

dct 3virok iJ \T k (2a-1 • -)-'-u6  , exp(Cu 2 )'

(14)

The integral in Eq. (14) about u can be further reduced to

d7T - 4m (avth) 2 C1/2 (1 + C - 2a-X) exp ( u62\ udu 6 . (15)
dt 3V/'7Tok (-±+03/2i e 1+ 6J

Let us rewrite Eq. (15) as

dT Yf - T"T- T, (16)
d t r 1nqw

where the new equilibration time scale is obtained from Eq. (16) and Eq. (15) as

new 
3 mmfr (1 Iexp(-x_, ,x -1 17)

Teq 16/_2 2 (17)

Here, T = (nfva7;rr2)-l, where the average relative speed between two different groups

of Maxwellian particles is Va,, = 8kT'/(7Ti), and the interaction radius is defined as r
ZZfe 2/(87rIokT'). The non-dimensional interaction strength is defined as x = H/T'),
in which the collision strength is defined as

H = " (18)

where Ap = mAy is the magnitude of the momentum transfer for a collision event, and
the reduced temperature is defined as
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V'=f p _Tn_ý/"

- +Till I).(9

No approximations are used to arrive at Eq. (17). However the integral in Eq. (17) diverges
due to the long range Coulomb interaction, and a cutoff must be imposed on the non-
dimensional collision strength x. The minimum and maximum non-dimensional velocity
change can be expressed in terms of the average relative speed and the Coulomb logarithm
as [51

-C = 7, (20)

= * (21)116,max = Vth"

For the two temperature system, the average relative speed is vi. -

2 ((1 + ()/(Tr()) 1/2 vth, and the integral limits for Eq. (17) become

4= -e2A (22)
7r"

4
m:,,, = -. (23)

7r

Substituting these into Eq. (17), we obtain the equilibration time scale

7TIlCeV = 3mrlif 3mrn~o/ 47rf() \2/ (AT +kTf 3/2

81i2F (0, !e2A 4) 4\1'2)7"F (0, fe~,) ~eA 771 77flr/

(24)

where the zeroth-order incomplete gamma function F(0, :x,,,i, :r:nm,×) is defined as

F(0, Xni,, X£,,x) e r - dX. (25)

The difference between Spitzer's approach and the present approach is characterized by
the ratio

-v 2A (26)

which is only a function of the Coulomb logarithm. With this, a comparison of Eq. (24)
and Spitzer's result Eq. (11) is shown in Fig. I. The new result Eq. (24) is generally larger
than the traditional one. When the Coulomb logarithm is larger than 10, the difference is
less than 5%. However, the difference can be substantial when the Coulomb logarithm is
less than ten.
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FIGURE 1. A plot of Eq. 26.
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